643 research outputs found

    Improved Energy Detector for Wideband Spectrum Sensing in Cognitive Radio Networks

    Get PDF
    In this paper, an improved energy detector for a wideband spectrum sensing is proposed. For a better detection of the spectrum holes the overall band is divided into equal non-overlapping sub-bands. The main objective is to determine the detection thresholds for each of these subbands jointly. By defining the problem as an optimization problem, we aim to find the maximum aggregated opportunistic throughput of cognitive radio networks. Introducing practical constraints to this optimization problem will change the problem into a convex and solvable one. The results of this paper show that the proposed improved energy detector will increase the aggregated throughput considerably

    Antilocalization in Coulomb Blockade

    Full text link
    We study the effect of spin-orbit scattering on the statistics of the conductance of a quantum dot for Coulomb blockade peaks and valleys. We find the distribution function of the peak heights for strong spin-orbit scattering in the presence and absence of time reversal symmetry. We find that the application of a magnetic field suppresses the average peak height, similar to the antilocalizaion in the bulk systems. For the valleys, we consider the elastic cotunneling contribution to the conductance and calculate its moments at the crossover between ensembles of various symmetries.Comment: 4 pages, 2 figure

    Acoustic phonon scattering in a low density, high mobility AlGaN/GaN field effect transistor

    Full text link
    We report on the temperature dependence of the mobility, Ī¼\mu, of the two-dimensional electron gas in a variable density AlGaN/GaN field effect transistor, with carrier densities ranging from 0.4Ɨ1012\times10^{12} cmāˆ’2^{-2} to 3.0Ɨ1012\times10^{12} cmāˆ’2^{-2} and a peak mobility of 80,000 cm2^{2}/Vs. Between 20 K and 50 K we observe a linear dependence Ī¼acāˆ’1=Ī±\mu_{ac}^{-1} = \alphaT indicating that acoustic phonon scattering dominates the temperature dependence of the mobility, with Ī±\alpha being a monotonically increasing function of decreasing 2D electron density. This behavior is contrary to predictions of scattering in a degenerate electron gas, but consistent with calculations which account for thermal broadening and the temperature dependence of the electron screening. Our data imply a deformation potential D = 12-15 eV.Comment: 3 pages, 2 figures, RevTeX. Submitted to Appl Phys Let

    Negative Echo in the Density Evolution of Ultracold Fermionic Gases

    Full text link
    We predict a nonequilibrium critical phenomenon in the space-time density evolution of a fermionic gas above the temperature of transition into the superfluid phase. On the BCS side of the BEC-BCS crossover, the evolution of a localized density disturbance exhibits a negative echo at the point of the initial inhomogeneity. Approaching the BEC side, this effect competes with the slow spreading of the density of bosonic molecules. However, even here the echo dominates for large enough times. This effect may be used as an experimental tool to locate the position of the transition.Comment: 4 pages, 2 figure

    Sampling constrained probability distributions using Spherical Augmentation

    Full text link
    Statistical models with constrained probability distributions are abundant in machine learning. Some examples include regression models with norm constraints (e.g., Lasso), probit, many copula models, and latent Dirichlet allocation (LDA). Bayesian inference involving probability distributions confined to constrained domains could be quite challenging for commonly used sampling algorithms. In this paper, we propose a novel augmentation technique that handles a wide range of constraints by mapping the constrained domain to a sphere in the augmented space. By moving freely on the surface of this sphere, sampling algorithms handle constraints implicitly and generate proposals that remain within boundaries when mapped back to the original space. Our proposed method, called {Spherical Augmentation}, provides a mathematically natural and computationally efficient framework for sampling from constrained probability distributions. We show the advantages of our method over state-of-the-art sampling algorithms, such as exact Hamiltonian Monte Carlo, using several examples including truncated Gaussian distributions, Bayesian Lasso, Bayesian bridge regression, reconstruction of quantized stationary Gaussian process, and LDA for topic modeling.Comment: 41 pages, 13 figure

    Current tidal power technologies and their suitability for applications in coastal and marine areas

    Get PDF
    A considerable body of research is currently being performed to quantify available tidal energy resources and to develop efficient devices with which to harness them. This work is naturally focussed on maximising power generation from the most promising sites, and a review of the literature suggests that the potential for smaller scale, local tidal power generation from shallow near-shore sites has not yet been investigated. If such generation is feasible, it could have the potential to provide sustainable electricity for nearby coastal homes and communities as part of a distributed generation strategy, and would benefit from easier installation and maintenance, lower cabling and infrastructure requirements and reduced capital costs when compared with larger scale projects. This article reviews tidal barrages and lagoons, tidal turbines, oscillating hydrofoils and tidal kites to assess their suitability for small-scale electricity generation in shallow waters. This is achieved by discussing the power density, scalability, durability, maintainability, economic potential and environmental impacts of each concept. The performance of each technology in each criterion is scored against axial-flow turbines, allowing for them to be ranked according to their overall suitability. The review suggests that tidal kites and range devices are not suitable for small-scale shallow water applications due to depth and size requirements respectively. Cross-flow turbines appear to be the most suitable technology, as they have high power densities and a maximum size that is not constrained by water depth
    • ā€¦
    corecore